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We study the dynamics of cyclic competing mobile five species on spatially extended systems

originated from asymmetric initial populations and investigate the basins for the three possible

asymptotic states, coexistence of all species, existences of only two independent species, and the

extinction. Through extensive numerical simulations, we find a prosperous dependence on initial

conditions for species biodiversity. In particular, for fixed given equal densities of two relevant

species, we find that only five basins for the existence of two independent species exist and they

are spirally entangled for high mobility. A basin of coexistence is outbreaking when the mobility

parameter is decreased through a critical value and surrounded by the other five basins. For fixed

given equal densities of two independent species, however, we find that basin structures are not

spirally entangled. Further, final states of two independent species are totally different. For all

possible considerations, the extinction state is not witnessed which is verified by the survival

probability. To provide the validity of basin structures from lattice simulations, we analyze the

system in mean-field manners. Consequently, results on macroscopic levels are matched to direct

lattice simulations for high mobility regimes. These findings provide a good insight into the funda-

mental issue of the biodiversity among many species than previous cases. Published by AIP
Publishing. https://doi.org/10.1063/1.4998984

Species coexistence is a main issue in ecological sciences.

In nature, competitions among species can be elucidated

by predator-prey systems, and evolutionary games are

powerful tools to interpret dynamical phenomena. In the

past several years, one of the popular children’s games,

the rock-paper-scissors (RPS) game, has been widely

used to describe cyclic competing structures among spe-

cies in nature. As an extension, the generally extended

rock-paper-scissors (ERPS) game has been adopted to

describe the cyclic competition for many species. As

above, existing studies for extended rock-paper-scissors

games have been investigated about the influence of

external interactions, for instance an individual’s mobil-

ity, to promote the biodiversity with a symmetric single

initial density on spatially extended systems in frame-

works on the microscopic level because of the dilemma

of unstable coexistence of all species at the macroscopic

level. One of the existing studies for cyclic competing

three species addressed the issue of asymmetric initial

densities and suggested the global insight for species’

coexistence/extinction related to initial densities of all

species on spatially extended systems. Motivated from

these two studies, we consider the relation between

asymmetric initial densities and biodiversity on the

cyclic competing five species model which possesses three

different survival states. An impediment for suitable rep-

resentations of the phase space to illustrate the underly-

ing five dimensional system, we compute basin structures

of initial values on a three dimensional triangular phase

space, which is similar to the simplex representation,

satisfying the sum of three components as certain values

with fixing initial values for the other two components.

We characterize the final states to demonstrate basin

structures for possible survival states from direct simula-

tions of the microscopic models. Through our extensive

numerical simulations on a lattice, we find that

symmetry-breaking of initial densities can lead only two

different survival states, the existence of two species, and

the coexistence of all species. On the contrary, to rock-

paper-scissors models, the extinction state that only one

species exists does not appear and this fact can be guar-

anteed by the measure of the survival probability.

Especially, basin structures on a triangular phase space

are totally different depending on the consideration that

which initial densities of two species are fixed. For fixed

two neighbor species, the basin for the coexistence of

all species can emerge at the concurrence of spirally

entangled five basins for the existence of two species. For

fixed two independent species, however, the system yields

different results. In this case, basins for the existence of

two species are not spirally formed and only some cases

of two species’ existences can appear depending on the

initial considerations. Further, for high mobility cases,

these dynamical phenomena can be supported by mean-

field frameworks. Our results will provide a qualitative

insight into the biodiversity of more species systems.
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I. INTRODUCTION

Understanding mechanisms of species diversity is a fun-

damental problem in interdisciplinary science. Key factors to

biodiversity is the survival of species which have been stud-

ied theoretically and experimentally.1–5 In this respect, vari-

ous models and experiments suggested that nonhierarchical,

cyclic competition among species is a significant framework

for species coexistence which can be described by one of the

evolutionary games, the rock-paper-scissors (RPS) game.6

The RPS nature has been a powerful tool to demonstrate and

interpret various dynamical phenomena in ecosystems, for

instance, matings of side-blotched lizards in California,7 col-

icinogenic microbes’ competitions,8 rivalry among strains of

yeast,9 and Escherichia Coli.10

Studies of the RPS game have been widely performed

by incorporating spatial structures to be consistent with experi-

mental observations due to the structurally unstable coexistence

on macroscopic frameworks. In this regard, the coexistence of

three species can occur by formation of entangled spiral waves

in the spatial region and the individual’s mobility has been

identified as the key role for the coexistence/extinction.11,12

Subsequently, spatially extended systems provide various per-

spectives of key factors on species coexistence such as the

effect of community and population size,13–15 coevolution in a

well-mixed population,16 long-range migration,17,18 role of

inhomogeneous or random reaction rates,19,20 local habitat suit-

ability,21 and intraspecific competition.22

Even much work has been performed on spatially

extended systems, most of the existing studies have been con-

sidered for the RPS game. Although it is found that simply

extending the numbers of species on cyclic competing struc-

tures may cause more involved phenomena.23–27 Accordingly,

the dynamics for cyclic competing five species models such

as the extended rock-paper-scissors (ERPS) or rock-paper-

scissors-lizard-spock (RPSLS) games among five species on

spatially extended systems have been investigated.28–35

In existing studies on spatially extended systems, dynam-

ical phenomena of species have been considered originated

from the single initial condition. Actually, the dependence on

initial conditions for a system’s behavior is an important issue

in dynamical systems: positive topological entropy in dynam-

ical systems,36 characterization of the space time complexity

of cellular automata,37 collective sensitivity between the orig-

inal and induced hyper systems,38 the emergence of strange

attractors,39 control of dynamical systems depending on

initial conditions,40–42 basin stability for bistable states in

complex systems,43 and biodiversity depending on initial

conditions in multispecies systems.44–47 Especially, in Refs.

46 and 47, the effect of initial conditions of the RPS game on

spatially extended systems has been investigated. Depending

on the choice of the mobility value, the available phase space

is divided either into three regions for the extinction or into

four regions including the basin of the coexistence in a proper

representation. Consequently, for two distinct asymptotic

states, extinction and coexistence, the rich and sensitive

dependence of dynamical properties on initial conditions has

been covered versus mobility. For the ERPS game, computa-

tions and analysis of all previous studies have been carried

out with respect to a single initial consideration with equal

species densities. The aim of this paper is to provide more

comprehensive insights into the issue of basins in the spatial

ERPS game.

In Sec. II, we describe the spatial ERPS game of mobile

five species and the method for computing basins for three dis-

tinct categories of asymptotic states. In Sec. III, we character-

ize the basins of distinct final states from lattice simulations.

We consider that densities of the two species will be fixed

under two different choices to be represented properly. To

guarantee the appearance of final states, we provide the evi-

dence by exploring the survival probability. In Sec. IV, we elu-

cidate the basin structures at high mobility values theoretically

based on ordinary differential equations (ODEs). Conclusion

and further discussions will be addressed in Sec. V.

II. CYCLIC COMPETITION AMONG FIVE SPECIES
ON SPATIALLY EXTENDED SYSTEMS

The cyclic competition model among mobile five spe-

cies was proposed in Ref. 33 on a square lattice of size N
¼ L� L with periodic boundary conditions. Each site of a

lattice is either occupied by randomly distributed five species

or left empty. An individual on a lattice site interacts with

one of the four nearest neighbors, according to the following

rules:

AB!r A1; BC!r B1; CD!r C1;

DE!r D1; EA!r E1; (1)

A1!l AA; B1!l BB; C1!l CC;

D1!l DD; E1!l EE; (2)

XY!e YX; 8X; Y 2 fA;B;C;D;E;1g; (3)

where A, B, C, D, and E represent five species and 1
denotes an empty site. Relations (1) indicate the interspecific

competition between two different species with a rate r.

Relations (2) describe the reproduction of each species with

a rate l and it occurrs when an empty space in neighbors is

allowed. The exchange process (3) can occur for all pairwise

individuals with the same rate e defined by e ¼ 2MN for an

individual’s mobility M and a system size N according to

the theory of random work.50 The rates of interspecific com-

petition, reproduction, and exchange are normalized as

r=ðrþ lþ eÞ, l=ðrþ lþ eÞ, and e=ðrþ lþ eÞ, respec-

tively. In the simulation, an actual time step is defined

when, on average, each individual has interacted with others

once, i.e., one time step involves N pairwise interactions

altogether.

In Refs. 46 and 47, the concept of attraction basin in the

RPS game has been introduced. In these models, since the

initial densities of three species are defined in a triangular

region, the simplex S3 can be a proper phase space to be rep-

resented. In the ERPS game, however, the initial densities of

five species are originally defined by the simplex S5, so it is

hard to demonstrate visually. To overcome this problem,

by imitating the methods,46,47 we fix the initial densities of

two species and thus all possible combinations of the initial
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densities of remaining three species can be defined in a trian-

gular phase space. In the triangular phase space, the coordi-

nates of a point indicate a combination of the initial densities

of three species and the total densities of five species will

satisfy the simplex S5 by incorporating the assumption of

densities of two species. We will introduce the concrete

method in Sec. III. We already know that the ERPS game

possesses three distinct asymptotic states.33 From the mea-

sure of the survival probability, we find that only two types

of final states can appear in the ERPS game. The basins can

thus be represented by regions in the triangular phase space

with six different colors.

In Ref. 33, the interplay between mobility and coexistence

has been investigated, but for the symmetrical case when the

initial populations of the five competing species are identical.

For M < Mc, coexistence of five species arises and the biodi-

versity is broken for M > Mc, where a critical value of mobil-

ity Mc ¼ ð3:560:5Þ � 10�4. To make an unbiased comparison

with the previous work, we assume equal reaction probabilities

for interspecific competition and reproduction rates, i.e.,

r ¼ l ¼ 1 to be handled the mobility M as the only parameter

of the system. To search for a plausible foundation, we use 30

random realizations on square lattices of 100� 100 sites and

the simulation time T ¼ 10N to ensure that the final state can

be reached from any initial densities in our simulations.

III. BASIN STRUCTURE FROM LATTICE SIMULATIONS

To investigate the dependence on initial densities, we

examine the basins of three distinct categories of asymptotic

states: (a) p1 for the extinction, (b) p2 for the existence of two

independent species which have no predator-prey relationship,

and (c) p5 for the coexistence of all species, which are predicted

from the mean-field approach.33 The phase space of the system

can be defined by the five population densities, na, nb, nc, nd,

and ne, and the ratios of the populations to the total number of

lattice sites for the species A, B, C, D, and E, respectively.

For the sake of convenience for graphical representation

of basins, we consider a triangular phase space nx þ ny þ
nz ¼ a which stands for the fixation of the sum for initial

densities a of arbitrary three species. From various construc-

tions of initial densities, we consider that densities of

remaining two species will be equally fixed by ð1� aÞ=2 in

a simple way to include the case of symmetric initial condi-

tion. On the construction of initial conditions, we consider

two cases of initial constructions of three species based on

cyclic predation ways: (a) within two neighboring pairs and

(b) one neighboring pair with one independent species. To

be addressed, sampled initial states will be considered as

DABC and DACE for (a) and (b), respectively.

A. Initial conditions with equally fixed two neighboring
species

For fixed equal densities of two neighboring species D
and E, i.e., nd¼ ne, we demonstrate the basin structures of

survival states on a phase space na þ nb þ nc ¼ a for differ-

ent values of the mobility M as shown in Fig. 1. The sum a
of densities of three species A, B, and C is fixed to be 0.4,

0.6, and 0.8 from top to bottom, respectively. Hence densi-

ties of remaining two species D and E are equally fixed to be

nd ¼ ne ¼ 0:3, 0.2, and 0.1.

For M > Mc as shown in Figs. 1(a), 1(f), 1(k) and 1(b),

1(g), 1(l) for M ¼ 3� 10�3 and 10�3, respectively,

FIG. 1. Basins of final states of the ERPS game represented on the phase space DABC for different values of the mobility M from stochastic simulations. The

coordinates denote the initial densities of the three species A, B, and C satisfying nað0Þ þ nbð0Þ þ ncð0Þ ¼ 0:4 for (a)–(e), 0.6 for (f)–(j), and 0.8 for (k)–(o).

For M ¼ 3� 10�3, in panels (a), (f), and (k), the phase space contains only five asymmetric spirally entangled basins for p2 without that for the coexistence.

These five basins are enlarged spirally to the boundaries of a phase space for M ¼ 10�3 as shown in panels (b), (g), and (l). For M ¼ 10�4, in panels (c), (h),

and (m), a small basin for p5 with light blue color appears about the concurrence of five basins for p2 on DABC. For fourth and last columns, M ¼ 10�5 and

10�6, respectively, the coexistence basin is more enlarged. For all possible considerations, the basin for p1 does not emerge. Each color represents the final

state obtained from 30 random realizations on a given 100� 100 square lattice.
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regardless of the choice of the initial population densities,

one of p2 which two independent species can survive is

reached and the phase space is divided into five basins. Each

colored region consisting of initial conditions that lead to

one of p2 indicates: red for A and C, blue for A and D, green

for B and D, magenta for B and E, and yellow for C and E,

which are illustrated in Fig. 2.

Five basins of p2 are entangled asymmetrically and spi-

rally and the concurrence of these basins is not necessary in

the center of a triangular phase space of initial conditions.

For the mobility M ¼ 3� 10�3, the concurrence among

these basins is shifted as a is increased, which is illustrated

in Figs. 1(a), 1(f), and 1(k). Along the boundaries between

the basins, the final state of p2 is sensitive to small perturba-

tions in the initial population densities. At the concurrence

that five basins meet, an arbitrarily small variation can lead

to a completely different state of p2. Which two independent

species can survive finally hence depends sensitively on

small variations in the initial population densities.

As M is decreased through Mc, i.e., M < Mc, the p5

basin for the coexistence of five species emerges from the

concurrence of all p2 basins as shown in Figs. 1(c), 1(h), and

1(m) for M ¼ 10�4. As illustrated in Figs. 1(d), 1(i), and

1(n) for M ¼ 10�5, the area of the p5 basin expands as M is

decreased further, accompanied by the simultaneous shrink-

ing of the five basins for p2. Biodiversity is promoted by

inhibiting population mobility, reflected by the augmentation

of the area of the coexistence state p5 as shown in Figs. 1(e),

1(j), and 1(o) for M ¼ 10�6.

From basin structures, we may know that there is no

basin of p1 for all values of mobility M. To be concrete

whether p1 emerges or not, we investigate how three distinct

states will occur frequently by calculating the survival proba-

bility Pi
surv of three distinct states for all values of mobility.

Survival probability is defined by the probability of survival

chances of each state for the given mobility value after suffi-

ciently long enough simulation time and the indicator i is

the number of existing species at the final step: Pi
surv

¼Prob{i-surviving species after time T}.

Without loss of generality, we measure the survival

probability using the symmetric initial condition to be com-

pared with the existing work.33 In our simulations, we con-

sider a simulation time T ¼ 4N to reach the steady state for

100 random realizations at each mobility value with different

lattice sizes.

Figure 3 shows the survival probability of three distinct

states calculated for all values of mobility on different sys-

tem sizes from 40� 40 to 500� 500. For Fig. 3(a), the sur-

vival probability P1
surv for the state p1 is always zero. In other

words, the extinction state has never occurred in the ERPS

system even though it can be expected theoretically. For Fig.

3(b) and 3(c), however, we may find two distinct states p2

and p5 for coexistences of two independent species and five

species, respectively. For low mobility regimes, as we

already know in Ref. 33, the coexistence of five species is

witnessed [Fig. 3(c)]. As mobility is increased, however, the

survival probability of five species gets decreased and the

biodiversity is hampered as mobility exceeds the critical

mobility. Instead, as shown in Fig. 3(b), two independent

FIG. 2. Illustrations of five cases of p2 which indicates the existence of two

species in the ERPS game. Interestingly, two species exist independent of

interspecific competitions under the breaking of the cyclic structure.

FIG. 3. The survival probability of the ERPS game on a lattice depending

on mobilities under the symmetric initial condition. (a) P1
surv for p1 is always

zero for all mobility values. In this model, there is no extinction even though

mobility is induced. (b) P2
surv for p2 increases as mobility increases. As the

lattice size gets larger, a curve rapidly increases and approaches to 1. Thus,

two independent species finally survive robustly at high mobility regimes.

(c) P5
surv for p5, on the contrary, gets decreased as mobility increases.

Coexistence of all species at low mobility regimes is broken as mobility

exceeds the critical mobility.
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species may survive robustly for high mobility values. The

survival probability P2
surv sharply increases and approaches 1

as mobility increases for a finite evolution time. From the

information of survival probabilities, we may find that states

p2 and p5 can be revealed and the state p2 is robust at high

mobility regimes.

B. Initial conditions with equally fixed two
independent species

When the initial densities of two species in neighbors

are fixed, all five p2 basins are represented in the triangular

phase space DABC for instance. Further, a p5 basin can also

emerge when low mobility values satisfying M < Mc are

considered. As referred in the RPS game,46 five p2 basins are

formed spirally and the coexistence basin is captured and

expanded from the point at which all five p2 basins meet. For

the second consideration of the initial construction defined

by DACE, however, basin structures can be obtained in differ-

ent ways though we consider the same system. Similarly to

the case of DABC, the sum of three species will be fixed by a

certain value, i.e., na þ nc þ ne ¼ a where a will be 0.4, 0.6,

and 0.8. Thus, for in each case, the initial densities of species

B and D are equally given as 0.3, 0.2, and 0.1, respectively.

Figure 4 shows basin structures in the phase space DACE

for different mobilities. On the contrary to the case of DABC as

shown in Fig. 1, we find the totally different basin structures

by changing initial constructions even when the same system

is considered. Top panels in Fig. 4 show basin structures for

a ¼ 0:4. In this case, we find only three states of p2 for

M > Mc. As M decreases satisfying M < Mc, a new basin of

the state p2 emerges inside the basin of p2 for species C and

E(yellow area) as shown in Figs. 4(c), 4(h), and 4(m), which

guarantees the survival of species B and E. Simultaneously,

the area of yellow and red colored p2 basins gets larger and

maintains its size as M decreases. As M decreases further, the

region inside the yellow p2 basin gets fuzzy, which means

that all possible five cases of the state p2 can occur sensitively

depending on the initial densities of species [Figs. 4(c)–4(e)].

For all possible mobility values, the coexistence state p5 does

not appear in this case. In fact, the coexistence of five species

does not occur when a ¼ 0:4 and it is obviously validated by

examining the survival probability of the state p5 (P5
surv) for

low mobility values as shown in Fig. 5.

When a ¼ 0:6 and 0.8, however, we find all possible

five basins of the state p2 for high mobility values M > Mc,

which are illustrated in Figs. 4(f)–4(g) and 4(k)–4(l), respec-

tively. Further, the coexistence p5 basin emerges as M
decreases satisfying M < Mc, which can occur near the con-

currence among five p2 basins. The change of initial con-

struction thus can lead to the different survival states and the

weak spirally entangled basin structures may occur if all

basins of the state p2 exist.

IV. PREDICTION OF BASINS FOR THE HIGH MOBILITY
REGIME BASED ON THE MEAN-FIELD ANALYSIS

The basin structure for the state p2 can be predicted ana-

lytically since cyclic dynamics can be interpreted in the

mean-field framework if M is sufficiently high satisfying

M > Mc
3,46,48

FIG. 4. Basins of final states of the ERPS game represented on the phase space DACE for different values of the mobility M from stochastic simulations. The

coordinates denote the initial densities of the three species A, C, and E satisfying nað0Þ þ ncð0Þ þ neð0Þ ¼ 0:4 for (a)–(e), 0.6 for (f)–(j), and 0.8 for (k)–(o).

All other conditions, including mobilities for simulations are the same in the case DABC. For a ¼ 0:4, three cases of p2 basins mainly dominate the phase space

for M > Mc as shown in (a) and (b). As M is decreased satisfying M < Mc, a panel (c), another p2 basin emerges inside the region of present p2 basin. For

more lower mobility values, panels (d) and (e), the region inside one of p2 basins gets fuzzy, which means three possible cases of the state p2 can be appeared.

In this case, the coexistence p5 and extinction p1 basins are not emerged. For a ¼ 0:6 and 0.8, respectively, the phase space is occupied by five p2 basins for

high mobility values. In this case, these five basins are weak spirally and asymmetrically entangled. On the contrary to a ¼ 0:4, the coexistence p5 basin exists

as M is decreased. As above, the extinction basin does not occur for all possible initial considerations.
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_na ¼ lnað1� qÞ � rnane;

_nb ¼ lnbð1� qÞ � rnbna;

_nc ¼ lncð1� qÞ � rncnb;

_nd ¼ lndð1� qÞ � rndnc;

_ne ¼ lneð1� qÞ � rnend;

8>>>>>><
>>>>>>:

(4)

where q ¼ na þ nb þ nc þ nd þ ne is the total density at time

t. From direct calculations by setting _na ¼ _nb ¼ _nc ¼ _nd

¼ _ne ¼ 0, three types of equilibrium points can be obtained.

For the first type p1 which stands for the extinction state,

we have five points: ð1; 0; 0; 0; 0Þ; ð0; 1; 0; 0; 0Þ; ð0; 0; 1;
0; 0Þ; ð0; 0; 0; 1; 0Þ, and ð0; 0; 0; 0; 1Þ. For the second type p2

which indicates the coexistence of two species, the system

allows five points: ða�; 0; c�; 0; 0Þ; ða�; 0; 0; d�; 0Þ; ð0; b�; 0;
d�; 0Þ, ð0; b�; 0; 0; e�Þ, and ð0; 0; c�; 0; e�Þ as illustrated in

Fig. 2. These five points are not defined by specific forms,

but densities of existing two species satisfy nx þ ny ¼ 1.

The last type p5 for the coexistence of all species is

defined by l=ð5lþ rÞð1; 1; 1; 1; 1Þ. Mathematically, Eq. (4)

cannot yield absolute states p1; p2, and p5 since these all

equilibrium points are unstable by the linear stability analy-

sis. Nevertheless, Eq. (4) always shows the existence of two

species which are independent of interspecific competitions

due to existence of heteroclinic orbits among five points of

p2.3,49 However, Eq. (4) can still identify the basin structures

by considering the physical meaning of existence that the

number of existed species is less than unity due to the dis-

crete nature of individuals.46 To make an unbiased compari-

son of basin structures between the lattice simulations and

theoretical predictions, we calculate the final states of Eq. (4)

basins for all possible initial conditions under the same con-

siderations as lattice simulations.

In Eq. (4), the configuration among states p1 and p2 is

ambiguous due to the roundoff error on computations since

equilibrium points of p2 are defined by nx þ ny ¼ 1. To han-

dle this problem, we consider the threshold of densities by

err ¼ 10�6, which means that if density from the numerical

computation is calculated satisfying ni < err, then we regard

the density of the species as zero.

Figures 6 and 7 show the comparison of basin structures

of the state p2 between lattice simulations for a high mobility

FIG. 5. The survival probability of

p5; P5
surv, for each a for low mobility

values M. Mobility values are 10�4 for

(a), (d), and (g), 10�5 for (b), (e), and

(h), and 10�6 for (c), (f), and (i).

Panels from top to bottom indicate the

different value a as 0.4, 0.6, and 0.8,

respectively. As we show in the basin

structure in Fig. 4, the survival proba-

bility of the state p5 is always zero

which means the coexistence of five

species does not exist for a ¼ 0:4 even

though mobility values are low.

FIG. 6. Basin structures for p2 on

DABC derived from lattice simulations

(tops) with a mobility M ¼ 3� 10�3

and theoretical predictions from Eq.

(4) (bottoms). The sum a of initial den-

sities of three species are 0.4, 0.6, and

0.8 from left to right, respectively.

Basins from theoretical predictions are

also spirally entangled and all cases of

the state p2 appear which match lattice

simulations for each a.
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value and theoretical predictions on two different initial

phase spaces DABC and DACE, respectively. In each figure,

the sum a of initial densities of three species is given 0.4,

0.6, and 0.8 for (a) and (d), (b) and (e), and (c) and (f),

respectively. The initial densities of two other species are

kept uniform as above.

As shown in Figs. 6 and 7, solutions of Eq. (4) for all

possible initial considerations agree obviously with the

results from lattice simulation for high mobility values. The

coordinates of points in the phase space represent all possible

initial conditions and thus solutions of Eq. (4) may sensi-

tively depend on initial conditions, especially near the point

where five p2 basins meet. Thus, the theoretical prediction of

Eq. (4) may support our numerical results from extensive lat-

tice simulations for high mobility values.

V. CONCLUSION

As the one of the key factors to maintain the biodiver-

sity, in conclusion, we have addressed the effect of initial

densities by investigating basins of different survival states

in the cyclically competing mobile five species game on a

lattice. Here, basin structures are characterized by the final

state in the triangular phase space. We have found that for

the extended rock-paper-scissors game, basin structures can

be changed depending on the initial considerations. To be

concrete, two types of initial phase spaces have been consid-

ered. When the initial space contains three neighboring spe-

cies, e.g., DABC, five basins of the two species survival states

spirally entangle. About the point that five basins meet, a

coexistence basin can emerge, depending on the mobility

parameter of the fundamental spatiotemporal dynamical

system.

Although the same system is considered, however, the

basin structures are completely changed if the initial space is

considered in a different way. When the initial space con-

tains two relative and one independent species, e.g., DACE,

all possible basins of the two species survival states can exist

or not due to the total amount of initial densities of three spe-

cies. For all possible initial considerations, the extinction

basin never arises which has been guaranteed by measuring

the survival probability and the non-existing basin area of

p1. Similar to the basin stability,43 asymptotic states of the

system have been obviously depicted by the area of basins of

distinct states. Stochastic simulations for high mobility

regimes on a microscopic level are consistent with the theo-

retical prediction on a macroscopic level and we found that

five points constituting a stable heteroclinic cycle appear

from lattice simulations as a robust feature. Through our

microscopic and macroscopic endeavors, we suggest the per-

suasive insight for the biodiversity associated with the

extended rock-paper-scissors game which is sensitively

affected by the initial densities of species.
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